Neurogranin enhances synaptic strength through its interaction with calmodulin

نویسندگان

  • Ling Zhong
  • Tiffani Cherry
  • Christine E Bies
  • Matthew A Florence
  • Nashaat Z Gerges
چکیده

Learning-correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron-specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity- and NMDAR-dependent manner. In addition, Ng-mediated potentiation of synaptic transmission mimics and occludes long-term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng-CaM binding is necessary for Ng-mediated potentiation. Moreover, knocking-down Ng blocked LTP induction. Thus, Ng-CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurogranin Targets Calmodulin and Lowers the Threshold for the Induction of Long-Term Potentiation

Calcium entry and the subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. The induction of long-term potentiation (LTP) in the CA1 region of the hippocampus requires a relatively high amount of calcium-calmodulin. This requirement is usually explained, based on in vitro and theoretical studies, by the low affinity of CaMKII for calmodulin. An untested hypothesis, ...

متن کامل

Role of the neurogranin concentrated in spines in the induction of long-term potentiation.

Synaptic plasticity in CA1 hippocampal neurons depends on Ca2+ elevation and the resulting activation of calmodulin-dependent enzymes. Induction of long-term depression (LTD) depends on calcineurin, whereas long-term potentiation (LTP) depends on Ca2+/calmodulin-dependent protein kinase II (CaMKII). The concentration of calmodulin in neurons is considerably less than the total concentration of ...

متن کامل

Long-term potentiation: two pathways meet at neurogranin.

Since the discovery of hippocampal long-term potentiation (LTP) as a cellular equivalent of learning and memory, hundreds of molecules belonging to different signal transduction pathways have been implicated in the mechanism underlying LTP. To understand LTP, it is therefore important to elucidate how different signal transduction pathways intersect with each other. Neurogranin/RC3, a calmoduli...

متن کامل

Neurogranin regulates CaM dynamics at dendritic spines

Calmodulin (CaM) plays a key role in synaptic function and plasticity due to its ability to mediate Ca(2+) signaling. Therefore, it is essential to understand the dynamics of CaM at dendritic spines. In this study we have explored CaM dynamics using live-cell confocal microscopy and fluorescence recovery after photobleaching (FRAP) to study CaM diffusion. We find that only a small fraction of C...

متن کامل

Structural Basis for the Interaction of Unstructured Neuron Specific Substrates Neuromodulin and Neurogranin with Calmodulin

Neuromodulin (Nm) and neurogranin (Ng) are neuron-specific substrates of protein kinase C (PKC). Their interactions with Calmodulin (CaM) are crucial for learning and memory formation in neurons. Here, we report the structure of IQ peptides (24aa) of Nm/Ng complexed with CaM and their functional studies with full-length proteins. Nm/Ng and their respective IQ peptides are intrinsically unstruct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO Journal

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2009